
The 13th Korea-Japan Workshop on Ling and Lg Processing

Towards User Generated Speech
Databases in Language Education

Gábor PINTÉR

Kobe University
School of Languages and Communication

g-pinter@pearl.kobe-u.ac.jp
www.pinlab.info/talks/20121201-kj13/

Waseda University, 2012/12/01

The Slides

 find the slides at:

www.pinlab.info/talks/
20121201­kj13

3

Roadmap

0. Self Introduction

1. Background & Problems
1. ASR + CALL = CAPT
2. Problems & limitations
3. Just like Moodle?
4. Existing solutions

2. Yet Another Project
1. Project overview
2. Bolts and nuts
3. Data
4. What comes next?

4

Self Introduction

Section 0

5

From Hungary

Hungary

population
10 million

area
93,000 km2

language
Hungarian (92%)

src: en.wikipedia.org

6

Education & Work

Undergrad. Japanese, English Linguistics,
generative phonology & syntax

MA phonology, optimality theory

PhD perceptual phonology, phonotactics

Work Advanced Media: Speech Recognition

Research & Development

Teaching Osaka U of Foreign Languages,
Kobe University, Kansai University

7

Research Interest

Linguistics
Education

Artificial Intelligence

speech
recognition

psycho-linguistics
phonology
phonetics

programming

Pronunciation
Hungarian

English

8

Research Interest

CAPT
 Computer
 Assisted
 Pronunciation
 Training

Intersection of domains

Purpose education pronunciation training
Theory linguistics L1/L2 perception
Method AI Automatic Speech Recognition (ASR)

9

Goal

 develop pronunciation training solutions
 to help create projects with similar goals

content

supporting
tools

sound
exchange

computer
assisted

pronunciation
training
system

L2 corpus

ASR

learners'
AM

custom
ASR

AI

10

Roadmap

0. Self Introduction

1. Background & Problems
1. ASR + CALL = CAPT
2. Problems & limitations
3. Just like Moodle?
4. Existing solutions

2. Yet Another Project
1. Project overview
2. Bolts and nuts
3. Data
4. What comes next?

11

Section 1.1

ASR + CALL = CAPT

12

ASR meets CALL

 traditional pronunciation training
 demanding: requires individual attention
 unfit for large classes
 unfit for self-study (unlike multiple choice exercises)
 teachers are often skeptical

→ pronunciation training is often neglected

high expectations for
Computer-Assisted Language Learning

13

14

CAPT

Computer Assisted Pronunciation Training

The Big Players in Japan

Company Solution License (yen)

ATR ATR CALL n/a

Advanced Media Ami Voice Call 15,000

PronTest 発音検定 30,000

15

CAPT Product Types

 standalone software
 relatively cheap
 installed on a desktop
 single user

 system level solution
 expensive
 server-client typology
 tie-in sale of hardware

server clientsstandalone
 desktop

16

Structure Design

CAPT System

えーと ...
mappu?

MAPPU MAPtrained
models

Say “map” !

You said “mappu”!
Please try again!

?speech data

MAPPU

ASR

17

Section 1.2

Problems
with

Commercial Solutions

18

Commercial Solutions

 not so popular ↔ contrary to the expectations
 reasons

1. price → prohibitive

2. functionality → limited

3. content → limited

4. domains → CAPT / ASR mismatch

19

1. Prices

 prohibitive prices
(1) classroom use of individual licenses

15,000 x 40students = 600,000yen

(2) custom system (+content)
 starts from 1-2 million yen

 not an option for individual teachers
 in many cases even institutes can't afford it

20

1. Prices

 Models (AM, LM) need to be trained on real data
 huge amount of labeled data is needed

high demands on human / computational resources

 training time:
 ranges between a few days → a month

Target Domain Training Data
1 speaker
fixed set of words 1 hour

speaker independent
dictation 10,000 hours

21

2. Customization

(1) contents
 each problem needs (a) data (b) tuning
 contents are hard-wired → can't be changed on the fly

'light' ↔ 'right' Boring!
'climb' ↔ 'crime' can I use this instead? → unlikely

(2) software
 commercial CAPT systems are closed source
 not extensible by the user
 customization through vendors (vendor lock)

22

Custom Content

上智大学池田教授

23

Life-cycle of a Product

technological
achievement

innovations to
solve problems product

ASR, formant tracking automatic / l / ↔ / r /
discrimination

/ l / ↔ / r / trainer

Research & Development
Engineering

 research is expensive, innovative solutions are preferred
 changing anything is difficult

Business

client negotiation
requirements

budget

24

3. Problem Domains

 ASR is designed to..
 handle native speakers
 detect what they speak

→ tolerance for variation

 CAPT is designed to
 handle non-native speakers
 detect how they speak

→ has to detect wrong type of variations
→ has to detect error types

25

Inherent Controversy

ASR CAPT

 designed for: native non-native

 recognize: what ppl speak how ppl speak

 limitations of design → performance barriers
 CAPT systems

 mistakes have to be predefined + trained
 must be tuned separately for each L2

→ separate tuning for Japanese, Spanish... speakers of English

26

4. Functionality

 CAPT relies on traditional ASR
 technological constrains

 segment recognition (e.g., / l / ↔ / r / detection)
→ inherent to ASR technology

 prosody recognition (e.g., stress / intonation detection)
→ inherently absent in ASR (cf. preprocessing)

Recognition of.. Innovation Cost Implementation

segments low common

intonation high rare / experimental

27

Conflicting interests

corporate interest
 selling technology

(even if not needed)
 minimizing research

costs (reuse available
components)

 restricting
development to a
number of platforms
(Windows only)

 ensuring customer
loyalty (by vendor lock)

educational interest
 low prices
 extensibility of

 functionality
 contents

 integration with other
systems

 availability across
several platforms

28

Section 1.3

Just like Moodle?

29

LMS

 Moodle
 most popular Learning Management System (LMS)
 free and open source
 widely successful

30

Moodle vs CAPT

Moodle CAPT

publishing contents

creating assignments with plugins

collecting student data in some solutions

giving feedback

authentication
authorization

31

Open source CAPT?

 Why not imitate Moodle?
 How about a free and open source ASR for

pronunciation training?
 limitations

1. platform

2. modality

3. community

32

1. Platforms

 Moodle lives in the browser
→ massively cross-platform

even your cell phones browsers!

 developing CAPT for the browser?

 ASR is CPU & memory hungry intensive
→ Do we want to run 100 FFTs / sec in a browser?

 Maintenance
→ JavaScript ASR? cf. existing frameworks: HTK,
Sphinx, Julius →compiled languages

33

1. Platforms

 develop native application?

 for which platform?
→ increasing number of platforms
Microsoft Win7 vs. Win8 vs. WinRT
Google Android phone vs tablet
Apple iOS vs. MacOS
Linux < a complete mess >

 limited human resources

34

2. Modality

 text → easy (works out of the box)
 sound → complicated

Ever had a malfunctioning sound on your PC?
Ever had malfunctioning text? (besides char encoding)

 recording → hardware / platform specific
 browsers / HTML / JavaScript → no recording
 sound drivers

→ native code
→ virtual machine (JVM, Flash)

 error prone

huge disadvantage for sound-based systems

35

3. Developer base

 Moodle → wide developer base
 common problem: content management
 common solution: Linux + Apache + MySQL + PHP (LAMP)

→ easy to get involvement in the development

 ASR / CAPT → narrow developer base
special mix of expertise required

 linguistics: phonetics, phonology
 digital signal processing
 statistics
 programming

potential developer community is rather thin

36

Section 1.4

Existing Solutions

37

The Gong Project

 great software by
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

 server-client
sound exchange

 various activities
 Moodle plugin

38

Roadmap

0. Self Introduction

1. Background & Problems
1. ASR + CALL = CAPT
2. Problems & limitations
3. Just like Moodle?
4. Existing solutions

2. Yet Another Project
1. Project overview
2. Bolts and nuts
3. Data
4. What comes next?

39

Section 2.1

Project Overview

40

Idea

 for academic/educational use
 user-oriented, user-friendly
 sound exchange + evaluation system
 can be used without any ASR
 customizable / extandable / reusable

→ modular
→ open source

 ASR can be added later!

41

Framework Design
 user generated content (cf. web 2.0)
 main focus on functionality:

student-instructor interaction

create task

do task

evaluatefeedback

assign task

42

Dataflow

43

Components

create task

do task

evaluatefeedback

assign task

task builder

task player

evaluatorpublishing

availability handling big data

sound recording

sound editing / recording

44

Section 2.2

Bolts & Nuts

45

Task Player

Technical details
 Java + Swing

→ runs on desktop
 alternative: SWT

→ better widgets
→ can't embed fonts! (e.g., IPA)

 Sound: OpenAL (LWJGL wrapper)

→ Sun's reference implementation is too simple
 deployment: Java Web Start

→ runs on desktop: where JRE is available

시 작

46

Server Side

 django™
 functions as a CMS
 user authentication
 non-speech MySQL

backend
 speech

RESTful services
 Python → Jython (plan)
 Jython + Sphinx modules

→ ASR functionality

DB serverWeb server

 MongoDB™
 NoSQL → fits deve-

lopment phase
 .json format storage
 data:

 student response
(mainly sound)

 evaluation

.json

47

Code base

CORE

player evaluator

cache

GUI connectors
ASR

integration
DB

Connector

REST
service

recognition
+ evaluation

client server

currently
implemented

in Python

now: offline
experiments

django

- web platform
- user
 management

Java Python

48

Transferring Sound

PCM
.wav

Base64
string .json

.wav
Base64

string .json
decoding

encoding

optional Speex
with JSpeex

49

Section 2.3

Results

50

Task Player

 sound recording over the web

Customizable features
 pictures / sounds
 timed start / stop
 max duration
 number of replays /

recordings
 simultaneous play & rec

(for shadowing)

51

Task Evaluator

stric
tly alpha

52

Task Builder

 via Java source code (present practice)
 but not recommended

 via web browser (HTML + JavaScript)
 under development

53

Helping Tools

 pronunciation lookup
 to help creating course material
 dictionary: OALD (+CMU in latest versions)

54

In Action

 use cases (2011-2012)
 university conversation classes
 pre/post tests for US study tour
 phonology experiment: local + overseas (Korea)

55

Learners' Speech Corpus

 over 120 students
 Japanese learners of English
 over two semester
 in CALL rooms
 100 hours of data collected

 30 hrs direct speech
 70 hrs free speech

 transcription: in progress

56

Analysis

 Sphinx 4 with
 WSJ (Wall Street Journal) acoustic model

 freely available (several versions)
 frequencies

sampling 16,000 Hz
min 130 Hz
max 6800 Hz

 vector length: 39
 Gaussians: 8

 Speech Corpus: DARPA Spoken Language Program,
1991, read texts from Wall Street Journal news
→ frequently used for evaluation ($1,500)

57

Native Data

 textbook audio
 native data
 forced alignment

 high accuracy
 small misalignments

→ frame-size effect

58

Learners' Data

 learners' data
 CALL environment
 low voice + high noise

 apparent misalignments
 frame-size effect

59

Encountered Problems

 recording speech (handling devices, buffers)
 GUI design + threads
 graphics for sound waves
 embedding fonts
 data caching: memory / local / remote
 deployment (Java Web Start)
 Cross-Site Request Forgery (django's csrf token)
 Sphinx 4 versions

→ use the latest builds!

60

Project Schedule

 Phase 1 : 2011 – 2012
 technological backbone : sound exchange
 client-server communication

 Phase 2 : 2012 – 2013
 increase user experience
 gain user base

 Phase 3 : 2013 – 2014
 adding automatization, training learners' AM
 releasing source code and API for the public

61

Resources

 Slides & other presentations

www.pinlab.info/talks

 Blog: technical problems related to the project
→ with solutions

www.pinlab.info/blog

 CMU Sphinx 4
 ASR related lectures, tutorials, resources

www.cmusphinx.sourceforge.net

62

Work in progress

I will
be back!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

