The 13th Korea-Japan Workshop on Ling and Lg Processing

Waseda University, 2012/12/01

Towards User Generated Speech Databases in Language Education

Gábor PINTÉR

Kobe University School of Languages and Communication

g-pinter@pearl.kobe-u.ac.jp
www.pinlab.info/talks/20121201-kj13/

The Slides

find the slides at:

www.pinlab.info/talks/ 20121201-kj13

Roadmap

0. Self Introduction

- 1. Background & Problems
 - 1. ASR + CALL = CAPT
 - 2. Problems & limitations
 - 3. Just like Moodle?
 - 4. Existing solutions
- 2. Yet Another Project
 - 1. Project overview
 - 2. Bolts and nuts
 - 3. Data
 - 4. What comes next?

Section 0

Self Introduction

From Hungary

Hungary population 10 million

area 93,000 km2

language Hungarian (92%)

Education & Work

Japanese, English Linguistics, **Undergrad**. generative phonology & syntax phonology, optimality theory MA perceptual phonology, phonotactics PhD Work Advanced Media: Speech Recognition **Research & Development** Teaching Osaka U of Foreign Languages, Kobe University, Kansai University

Research Interest

Linguistics psycho-linguistics **Education** phonology Pronunciation phonetics Hungarian English speech recognition programming Artificial Intelligence

Research Interest

Intersection of domains

Purpose Theory Method

education linguistics Al pronunciation training L1/L2 perception Automatic Speech Recognition (ASR)

CAPT

- Computer
- Assisted
- Pronunciation
- Training

Goal

develop pronunciation training solutions
to help create projects with similar goals

Roadmap

0. Self Introduction

- Background & Problems

 ASR + CALL = CAPT
 Problems & limitations
 Just like Moodle?
 Existing solutions
- 2. Yet Another Project
 - 1. Project overview
 - 2. Bolts and nuts
 - 3. Data
 - 4. What comes next?

Section 1.1

ASR meets CALL

- traditional pronunciation training
 - demanding: requires individual attention
 - unfit for large classes
 - unfit for self-study (unlike multiple choice exercises)
 - teachers are often skeptical
 - \rightarrow pronunciation training is often neglected

high expectations for Computer-Assisted Language Learning

AmiVoice CALL Lite - pronunciation -

発音評定

CAPT

Computer Assisted Pronunciation Training

The Big Players in Japan

Company	Solution	License (yen)
ATR	ATR CALL	n/a
Advanced Media	Ami Voice Call	15,000
PronTest	発音検定	30,000

CAPT Product Types

- standalone software
- relatively cheap
- installed on a desktop
- single user

- system level solution
- expensive
- server-client typology
- tie-in sale of hardware

Structure Design

Section 1.2

Problems with Commercial Solutions

Commercial Solutions

- not so popular ↔ contrary to the expectations
- reasons
 - 1. price \rightarrow prohibitive
 - 2. functionality \rightarrow limited
 - 3. content \rightarrow limited
 - 4. domains
 - → CAPT / ASR mismatch

1. Prices

- prohibitive prices

 (1) classroom use of individual licenses
 15,000 x 40students = 600,000yen
 - (2) custom system (+content) starts from 1-2 million yen

- not an option for individual teachers
- in many cases even institutes can't afford it

1. Prices

Models (AM, LM) need to be trained on real data
huge amount of <u>labeled data</u> is needed

Target Domain	Training Data
1 speaker fixed set of words	1 hour
speaker independent dictation	10,000 hours

- training time:
 - ranges between a few days → a month

high demands on human / computational resources

2. Customization

(1) contents

- each problem needs (a) data (b) tuning
- contents are hard-wired → can't be changed on the fly 'light' ↔ 'right' Boring!
 'climb' ↔ 'crime' can I use this instead? → unlikely

(2) software

- commercial CAPT systems are closed source
- not extensible by the user
- customization through vendors (vendor lock)

Custom Content

AmiVoice CALL Lite - pronunciation -

発音評定

《 メインメニューに戻る

Life-cycle of a Product

- research is expensive, innovative solutions are preferred
- changing anything is difficult

3. Problem Domains

ASR is designed to..

- handle native speakers
- detect what they speak
 - \rightarrow tolerance for variation

CAPT is designed to

- handle non-native speakers
- detect how they speak
 - \rightarrow has to detect wrong type of variations
 - \rightarrow has to detect error types

Inherent Controversy

	ASR	САРТ
designed for:	native	non-native
recognize:	what ppl speak	how ppl speak

- limitations of design \rightarrow performance barriers
- CAPT systems
 - mistakes have to be predefined + trained
 - must be tuned separately for each L2
 - → separate tuning for Japanese, Spanish... speakers of English

4. Functionality

- CAPT relies on traditional ASR
- technological constrains
 - segment recognition (e.g., / I / ↔ / r / detection)
 - → inherent to ASR technology
 - prosody recognition (e.g., stress / intonation detection)
 → inherently <u>absent</u> in ASR (cf. preprocessing)

Recognition of	Innovation Cost	Implementation
segments	low	common
intonation	high	rare / experimental

Conflicting interests

corporate interest

- selling technology (even if not needed)
- minimizing research costs (reuse available components)
- restricting development to a number of platforms (Windows only)
- ensuring customer loyalty (by vendor lock)

educational interest

- Iow prices
- extensibility of
 - functionality
 - contents
- integration with other systems
- availability across several platforms

Section 1.3

fnoodle

Moodle

most popular Learning Management System (LMS)

LMS

- free and open source
- widely successful

Moodle vs CAPT

	Moodle	CAPT
publishing contents		×
creating assignments	with plugins	×
collecting student data		in some solutions
giving feedback		×
authentication authorization		×

Open source CAPT?

- Why not imitate Moodle?
- How about a free and open source ASR for pronunciation training?
- limitations
 - 1. platform
 - 2. modality
 - 3. community

1. Platforms

- Moodle lives in the browser

 → massively cross-platform
 even your cell phones browsers!
- developing CAPT <u>for the browser</u>?

- ASR is CPU & memory hungry intensive
 → Do we want to run 100 FFTs / sec in a browser?
- Maintenance

 \rightarrow JavaScript ASR? cf. existing frameworks: HTK, Sphinx, Julius \rightarrow compiled languages

1. Platforms

develop <u>native application</u>?

- for which platform?

 → increasing number of platforms
 Microsoft Win7 vs. Win8 vs. WinRT
 Google Android phone vs tablet
 Apple iOS vs. MacOS
 Linux
 a complete mess >
- limited human resources

2. Modality

- text → easy (works out of the box)
- sound → complicated

Ever had a malfunctioning sound on your PC? Ever had malfunctioning text? (besides char encoding)

recording → hardware / platform specific

- browsers / HTML / JavaScript → <u>no recording</u>
- sound drivers
 - → native code
 - → virtual machine (JVM, Flash)
- error prone

huge disadvantage for sound-based systems

3. Developer base

- Moodle → wide developer base
 - common problem: content management
 - common solution: Linux + Apache + MySQL + PHP (LAMP)
 - \rightarrow easy to get involvement in the development
- ASR / CAPT → narrow developer base special mix of expertise required
 - linguistics: phonetics, phonology
 - digital signal processing
 - statistics
 - programming

potential developer community is rather thin

Section 1.4

Existing Solutions
The Gong Project

great software by

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Play Record Pause Stop Edit Index Post Abort						
Time (sec): 00:00 00:00 (sec): Click on the timeline to change the playing time. Max. Time: 00:00 00:00 (sec): Image: the playing time.						
Your Name: 14						
Subject: 15						
Eont: Default Font 0 Image: Cantonese Yale Interface						

 server-client sound exchange

- various activities
- Moodle plugin

Roadmap

0. Self Introduction

- Background & Problems

 ASR + CALL = CAPT
 Problems & limitations
 Just like Moodle?
 Existing solutions
- 2. Yet Another Project
 - 1. Project overview
 - 2. Bolts and nuts
 - 3. Data
 - 4. What comes next?

Section 2.1

Idea

- for academic/educational use
- user-oriented, user-friendly
- sound exchange + evaluation system
- can be used without any ASR
- customizable / extandable / reusable
 - → modular
 - → open source
- ASR can be added later!

Framework Design

 user generated content (cf. web 2.0)
 main focus on functionality: student-instructor interaction

Dataflow

Components

availability

handling big data

43

Section 2.2

Task Player

\$

ΠΠ

<

Technical details

- Java + Swing
 → runs on desktop
- alternative: SWT
 - → better widgets
 - \rightarrow can't embed fonts! (e.g., IPA)
- Sound: OpenAL (LWJGL wrapper)
 - \rightarrow Sun's reference implementation is too simple
- deployment: Java Web Start
 - \rightarrow runs on desktop: where JRE is available

시작

>

2/6

ΠП

Server Side

Code base

Transferring Sound

Section 2.3

Results

Task Player

Customizable features

- pictures / sounds
- timed start / stop
- max duration
- number of replays / recordings
- simultaneous play & rec (for shadowing)

Task Evaluator

Task Builder

🚺 – C 🛛 🛃 –

- via Java source code (present practice)
 - but not recommended
- via web browser (HTML + JavaScript)
 - under development

6

🕘 file:///home/kinoko/Dropbox/workspace/JQueryFE/taskcreator.html

Recording Task Builder

Target Word List			#	text	dur	ret
			1	this is a sentence		
this is a sentence			2	this is a word		
this is a word			3	to		
to			4	read		
read						
Timing Options						
Rec dur(sec)	120					
Retakes	3					
Replays	1					
Create Task Set!						

Q

Helping Tools

- to help creating course material
- dictionary: OALD (+CMU in latest versions)

	PronDict v0.1									
Keyword				Increment						
English pronunciation can be fun					Use Box	Go!				
#	Entry	Dict	IPA		TI	TIPA				
1	English	oald	' <u>m</u> glւ{		"INglIS					
2	pronunciation	oald	prən,∧nøi'cı∫ən		pr@n""2nsI"	eIS@n				
3	can	oald	kæn		klae n					
4	be	oald	bi:		bi:					
5	fun	oald	Ґлп		f"2n					
						Copy				

In Action

- use cases (2011-2012)
 - university conversation classes
 - pre/post tests for US study tour
 - phonology experiment: local + overseas (Korea)

Learners' Speech Corpus

- over 120 students
- Japanese learners of English
- over two semester
- in CALL rooms
- 100 hours of data collected
 - 30 hrs direct speech
 - 70 hrs free speech
- transcription: in progress

Analysis

- Sphinx 4 with WSJ (Wall Street Journal) acoustic model
- freely available (several versions)
 - frequencies sampling 16,000 Hz min 130 Hz 6800 Hz max vector length: 39
 - Gaussians:
- 8
- Speech Corpus: DARPA Spoken Language Program, 1991, read texts from Wall Street Journal news \rightarrow frequently used for evaluation (\$1,500)

Native Data

- textbook audio
- native data
- forced alignment

- high accuracy
- small misalignments
 - → frame-size effect

Learners' Data

- learners' data
- CALL environment
- Iow voice + high noise
- apparent misalignmentsframe-size effect

Encountered Problems

- recording speech (handling devices, buffers)
- GUI design + threads
- graphics for sound waves
- embedding fonts
- data caching: memory / local / remote
- deployment (Java Web Start)
- Cross-Site Request Forgery (django's csrf token)
- Sphinx 4 versions
 - \rightarrow use the latest builds!

Project Schedule

Phase 1 : 2011 – 2012

- technological backbone : sound exchange
- client-server communication

Phase 2 : 2012 – 2013

- increase user experience
- gain user base

Phase 3 : 2013 – 2014

- adding automatization, training learners' AM
- releasing source code and API for the public

Resources

www.pinlab.info/talks

- Blog: technical problems related to the project

 → with solutions
 www.pinlab.info/blog
- CMU Sphinx 4
 - ASR related lectures, tutorials, resources
 www.cmusphinx.sourceforge.net

Work in progress

