The Japanese Sentence Structure
and Its Dependence on BA

Kei Yoshimoto
Tohoku University
1 Introduction

- A semantic approach to the processing of Jpn sentences (Scope Control Theory; Butler 2007)
- Japanese-specific behaviors in terms of topic/subject coreference and tense in complex sentences are nicely captured by the framework.
- How BA is reflected and processed by the four-level hierarchical structure of Jpn sentences.
Scope Control Theory

– Approximates dependency structures in natural language by fine-grained and restricted scope management.

– Dependencies are established as operator-variable dependencies.

– To see if a sentence is grammatical, the sentence as an SCT expression is evaluated.

– Evaluation: either direct interpretation or translation into predicate logic.

– Evaluation is made with respect to an assignment function which captures the contribution of the context.

The hierarchy involves heterogeneous linguistic data including topic/subject coreference in complex sentences, complex tenses, word order, scope of negation and question, and focus.
Is it tenable?

- Linguistic forms assigned to more than one level.
- Inconsistency between classification criteria
- Relative and quotative clauses
The problems can be solved (Yoshimoto et al. 2009).

Jpn sentences can be processed within the framework with multiply embedded Operator-Scope relationships

<table>
<thead>
<tr>
<th>Predicate constituents</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>main verb < causative</td>
<td></td>
<td>boulomaic < evidential
tense < evidential
deontic < tense</td>
<td>< epistemic</td>
<td>< modal particle</td>
</tr>
<tr>
<td>< {passive, potential}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< donative < honorific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-predicative constituents</td>
<td>non-subject NP < state adverbial</td>
<td>< place adverbial</td>
<td>topic < evidential adverbial</td>
<td>< illocutionary adverbial < {response, addressive}</td>
</tr>
<tr>
<td>< degree adverbial</td>
<td>< time adverbial</td>
<td>< evaluative adverbial</td>
<td>< imperative</td>
<td></td>
</tr>
<tr>
<td>< adv postposition</td>
<td>< adv postposition</td>
<td>< volitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effects on subjects given by hierarchy level of subordinate clause

<table>
<thead>
<tr>
<th>hierarchy level</th>
<th>head</th>
<th>untopicalized subjects</th>
<th>topicalized subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>te, etc.</td>
<td>identical</td>
<td>identical</td>
</tr>
<tr>
<td>B</td>
<td>to, etc.</td>
<td>distinct</td>
<td>identical</td>
</tr>
<tr>
<td>C</td>
<td>kara, etc.</td>
<td>distinct</td>
<td>distinct</td>
</tr>
</tbody>
</table>
Level B Subordinate Clause

– Untopicalized subjects are non-coreferential with each other.
– A topicalized matrix subject is identical with an omitted subordinate subject.

(1) a. [Tarōi ga uwagi o nugu]B to φj hangā ni kake-NOM jacket ACC take off SUCC (SBJ) hanger LOC hang ta.
PST
‘After Taro had taken off his jacket, someone hung it on a hanger.’

b. Tarōi wa [φi uwagi o nugu]B to hangā ni kake-ta.
NAME TOP (SBJ) jacket ACC take off SUCC hanger LOC hang PST
‘After Taro had taken off his jacket, he hung it on a hanger.’
Effects on the relation of subordinate tense with respect to matrix tense by hierarchy level of subordinate clause

<table>
<thead>
<tr>
<th>hierarchy level</th>
<th>head</th>
<th>non-\textit{ta}-marked matrix</th>
<th>\textit{ta}-marked matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>\textit{nagara}, etc.</td>
<td>dependent</td>
<td>dependent</td>
</tr>
<tr>
<td>B</td>
<td>\textit{node}, etc.</td>
<td>independent</td>
<td>dependent</td>
</tr>
<tr>
<td>C</td>
<td>\textit{ga}, etc.</td>
<td>independent</td>
<td>independent</td>
</tr>
</tbody>
</table>
5 Tense in Complex Sentences (2)

Level B Subordinate Clause

– When the matrix predicate is marked with *ta*, the subordinate tense is interpreted in relation to the matrix one.

– When the matrix predicate is without tense marking, the subordinate tense is interpreted in relation to the utterance time.

(2) a. \([\text{Haruko ga } \text{sotsugyō-suru}]_B \text{ node issho-ni ryokō-shi- ta.}\)

 NAME NOM graduate-NPST CAUS together travel PST

 ‘Because Haruko is/was going to graduate, I made a trip with her.’

 \((E_m < n, E_m < E_s)\)

b. \([\text{Haruko ga } \text{yasun-de iru}]_B \text{ node kanashii.}\)

 NAME NOM take time off PROG-NPST CAUS be sad-NPST

 ‘Because Haruko is absent, I am sad.’

 \((n \subseteq E_s, n \subseteq E_m)\)
The observed correspondence between topic/subject coreference and tense is more than coincidence.

But why?

Each hierarchical level introduces its own type of information.

SCT models the introduction and management of the layered information (＝ scopes).
The scope for "ga" is introduced within Level B and inaccessible from outside.

(3) a. Tarō ga ki-ta.
 NAME NOM come PST
 ‘Taro came.’

a’. (rga rel "Taro") ga (rga rel "kita")

a”. ∃y(Taro(y) ∧ kita(y))

a””. Hide "ga"
 ga Close "ga"

 Use "ga"
 y ga Rel nil, nil, "∧"

 y ga Lam "ga", "ga"
 y ga rga rel "kita"

 y ga rga rel "Taro"
The denotation of the topic links to a "wa" binding already open in the context.

(3) b. Tarō wa ki- ta.
 NAME TOP come PST
 'Taro came.'

b'. (rga rel "Taro") wa (rwa rel "kita")

b''. Taro(x) ∧ kita(x)

b'''.

\[
\begin{array}{c}
\text{waga} \\ x \\
\text{waga} \\
\text{waga} \\
\text{waga} \\
\text{waga}
\end{array}
\]

\text{Rel nil, nil, "∧"}

\[
\begin{array}{c}
\text{waga} \\ x \\
\text{Lam "wa", "ga"}
\end{array}
\]

\[
\begin{array}{c}
\text{waga} \\
\text{rwa rel "kita"}
\end{array}
\]

\[
\begin{array}{c}
\text{waga} \\
\text{rga rel "Taro"}
\end{array}
\]
8. Tense in Simple Sentence

- x, the first scope for "ev" (\equiv the utterance time), is open in the context.
- y, the second for "ev" binding (\equiv the eventuality time), is introduced by ta.

(4) b. John ga ki-ta

b'. (rev "John ga ki") 0 ta

b''. $\exists y < x \land \text{John ga ki(y)}$

b'''.

\[
\begin{align*}
\text{Hide "it"} \\
& & \text{Rel ["it"], ["r"], " "} \\
& & \text{Hide "ev"} \\
& & \text{Close "ev"} \\
& & \text{Use "ev"} \\
& & \text{Rel nil, nil, "\&"} \\
& & \text{Rel nil, nil, "<"} \\
& & \text{T("ev", 0)} \\
\end{align*}
\]
To constrains the subordinate clause to open a fresh "ga" binding independent of that of the main clause, as stipulated by ga.

(2) a. [Taro, ga uwagi o nugu]_B to φ_j hangā ni kake-
NAME NOM jacket ACC take off SUCC (SBJ) hanger LOC hang
ta.
PST
‘After Taro had taken off his jacket, someone hung it on a hanger.’

a’. (((rga rel "Taro") ga (rga rel "uwagi o nugu")) coord
"to") (rwa rel "hangā ni kakeeta")

a”’. scc(∃y(Taro(y) ∧ uwagi_o_nugu(y)), hanga_ni_kaketa(x))
The main predicate is bound by a scope x for "wa" (which is given by the context) in distinction from y, the scope for "ga" which binds the subordinate predicate.
The subjects in the subordinate and main clauses share the same referent.

(1) b. \textbf{Taro}_i \text{ wa } [\phi_i \text{ uwagi o nugu}]_B \text{ to hangā ni kake-ta.}
 NAME TOP (SBJ) jacket ACC take off SUCC hanger LOC hang PST
 ‘After Taro had taken off his jacket, he hung it on a hanger.’

b’. (((\text{rga rel "Taro"}) \text{ wa (rwa rel "uwagi o nugu"})) \text{ coord "to"}) (\text{rwa rel "hanga ni kaketa"})

b”. \text{ scc((Taro}(x) \land \text{ uwagi_o_nugu}(x)), \text{ hanga_ni_kaketa}(x))
The text reads as follows:

rwa attached to both predicates makes their interpretation sensitive to the value of the "**wa**" binding, which is given by the context.

[Diagram representation of a complex sentence structure with nodes labeled as follows: x, x, x, x, "wa", "ga", "∧", "to", "∧", "hangaa ni kaketa", "uwagi o nugu", "Taroo". The diagram shows how the variables and operators are connected to form the complex sentence structure.]
The matrix predicate is interpreted based on the topmost "ev" binding introduced by `ta`.

The subordinate clause is interpreted based on `z`, the "it" binding introduced by `non_ta_dyn` within the subordinate clause.

(2) a. `[Haruko ga sotsugyō-suru]_B node issho-ni ryoko-shi- ta.

 a'. (((rit "Haruko sotsugyo-suru") 0 non_ta_dyn coord "node") (rev "issho-ni ryoko-shi")(0) 0 ta

 a''. \[\exists y(y < x \land \text{causal}(\exists z(y < z \land \text{Haruko}_{-}ga_{-}sotsugyo_{-}suru(z)), \text{isshoni}_{-}ryoko_{-}suru(y))) \]
(2) a''.

Hide "it"

Rel ["it"], ["r"], "

Hide "it"

Hide "ev"

Close "ev"

Use "ev"

Rel nil, nil, "^"

Rel nil, nil, "<"

T("ev", 0) T("ev", 1)

Hide "it"

Rel ["it"], ["r"], "

Hide "it"

Rel nil, nil, "node"

Rel nil, nil, "issho-ni ryoko-shi-

Use "it"

T("ev", 0)

Rel nil, nil, "^"

Rel nil, nil, "<"

T("ev", 0) T("it", 0) Use "it"

Rel nil, nil, "Haruko ga sotsugyo-suru"

T("it", 0)
The matrix predicate is interpreted based on y, the "it" binding introduced by non_ta_stat.

The subordinate predicate is interpreted based on z, the "it" binding introduced within the subordinate clause by non_ta_stat.

(2) b. [Haruko ga yasunde-iru]$_B$ node kanashii.

b'. (((rit "Haruko ga yasun-de_iri") 1 non_ta_stat coord "node")
(rit "kanashii")) 0 non_ta_stat

b''. $\exists y(x \subseteq y \land \text{causal}(\exists z(x \subseteq z \land \text{Haruko}_\text{ga}_\text{-yasun-de_iri}(z)), \text{kanashii}(y)))$
(2) b"".

```
(2) b"".

<table>
<thead>
<tr>
<th>Action</th>
<th>Event</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide &quot;it&quot;</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>Use &quot;it&quot;</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>Rel nil, nil, &quot;⊆&quot;</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>T(&quot;ev&quot;, 0)</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>T(&quot;it&quot;, 0)</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>Lam &quot;it&quot;, &quot;r&quot;</td>
<td>evit</td>
<td>&quot;r&quot;</td>
</tr>
<tr>
<td>Rel [&quot;it&quot;], [&quot;rf&quot;], &quot;r&quot;</td>
<td>evit</td>
<td>&quot;r&quot;</td>
</tr>
<tr>
<td>Rel nil, nil, &quot;node&quot;</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>Use &quot;it&quot;</td>
<td>evit</td>
<td>nil</td>
</tr>
<tr>
<td>Rel nil, nil, &quot;kanashii&quot;</td>
<td>evit</td>
<td>&quot;kanashii&quot;</td>
</tr>
<tr>
<td>Rel nil, nil, &quot;Haruko ga yasun-de iru&quot;</td>
<td>evit</td>
<td>&quot;Haruko ga yasun-de iru&quot;</td>
</tr>
</tbody>
</table>
```
An SCT-based account of the phenomena

- Scopes
 - "wa" and "ev": are open in the context.
 - "ga" and "it": can only have a local binding.

- Subordinate clause
 - Level A: No subject/topic or tense operations
 - Level B: Binding of "ga" and "it"
 - Level C: linking to already open "wa" and "ev"
Jpn sentences are structured as multiply embedded Operator-Scope relationships

An inner layer of the sentence structure can refer to an outer layer, but not vice versa.

- Information missing in an inner layer can be retrieved by reference to that from an outer layer.

BA in Jpn sentence structures is a relative notion—approximated by MInami’s Levels C and D.

